Abstract
This paper analyzes a controlled servomechanism with feedback and a cubic nonlinearity by means of the Bogdanov–Takens and Andronov–Poincaré–Hopf bifurcations, from which steady-state, self-oscillating and chaotic behaviors will be investigated using the center manifold theorem. The system controller is formed by a Proportional plus Integral plus Derivative action (PID) that allows to stabilize and drive to a prescribed set point a body connected to the shaft of a DC motor. The Bogdanov–Takens bifurcation is analyzed through the second Lyapunov stability method and the harmonic-balance method, whereas the first Lyapunov value is used for the Andronov–Poincaré–Hopf bifurcation. On the basis of the results deduced from the bifurcation analysis, we show a procedure to select the parameters of the PID controller so that an arbitrary steady-state position of the servomechanism can be reached even in presence of noise. We also show how chaotic behavior can be obtained by applying a harmonical external torque to the device in self-oscillating regime. The advantage of achieving chaotic behavior is that it can be used so that the system reaches a set point inside a strange attractor with a small control effort. The analytical calculations have been verified through detailed numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.