Abstract
Designing a random dynamical system requires the prediction of the statistics of the response, knowing the random model of the uncertain parameters. Direct Monte Carlo simulation (MCS) is the reference method for propagating uncertainties but its main drawback is the high numerical cost. A surrogate model based on a polynomial chaos expansion (PCE) can be built as an alternative to MCS. However, some previous studies have shown poor convergence properties around the deterministic eigenfrequencies. In this study, an extended Pade approximant approach is proposed not only to accelerate the convergence of the PCE but also to have a better representation of the exact frequency response, which is a rational function of the uncertain parameters. A second approach is based on the random mode expansion of the response, which is widely used for deterministic dynamical systems. A PCE approach is used to calculate the random modes. Both approaches are tested on an example to check their efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.