Abstract

This paper presents an iterative strategy to address the steady-state optimization of biochemical systems. In the method we take advantage of a special class of nonlinear kinetic models known as Generalized Mass Action (GMA) models. These systems are interesting in that they allow direct merging of stoichiometric and S-system models. In most cases nonconvex steady-state optimization problems with GMA models cannot be transformed into tractable convex formulations, but an iterative strategy can be used to compute the optimal solution by solving a series of geometric programming. The presented framework is applied to several case studies and shown to the tractability and effectiveness of the method. The simulation is also studied to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed and other approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.