Abstract
AbstractFinding fully converged, steady-state solutions of the compressible Reynolds Averaged Navier-Stokes (RANS) equations for aerodynamic configurations on the border of the flight envelope often poses serious challenges to solution algorithms that have proven robust and successful for configurations at cruise conditions. Examples of such cases are agile configurations at high angles of attack. When trying to compute solutions in these scenarios, one often observes that the solution process breaks down after few iterations or that a steady-state RANS solution, although it may exist, cannot be reached with the employed solution algorithm. While, in general, no clear reason for this behavior can be identified, the complexity of these flows seems to be significantly greater compared to flows around transport aircraft in cruise flight. The flow fields are dominated by the interaction of shock waves with a system of vortices emanating from the leading edges on the upper surface of the wing, leading to massive flow separation. These flow features tend to be inherently unsteady and can be assumed to cause problems in computing a converged solution using an algorithm designed to find steady-state solutions of the RANS equations. To avoid these problems, it is not uncommon to calculate such configurations in an unsteady mode, which often comes at a rather high computational cost. This article demonstrates the necessity for implicit smoothers to approximate fully converged solutions of these challenging simulations. A numerical example is given to confirm that convergence is only possible using an exact derivative together with a suited preconditioner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.