Abstract

A two-species biological depletion model in a bounded domain is investigated in which one species is a substrate and the other is an activator. Firstly, under the no-flux boundary condition, the asymptotic stability of constant steady-states is discussed. Secondly, by viewing the feed rate of the substrate as a parameter, the steady-state bifurcations from constant steady-states are analyzed both in one-dimensional kernel case and in two-dimensional kernel case. Finally, numerical simulations are presented to illustrate our theoretical results. The main tools adopted here include the stability theory, the bifurcation theory, the techniques of space decomposition and the implicit function theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.