Abstract

Vegetation coupled with buildings proved to be efficient in mitigating excessive cooling, heating loads of buildings through achieving thermal comfort, microclimatic cooling, and control of insolation through the building envelope. This is possible through the shading effect, insulation, cooling by evapotranspiration, and wind barrier effects of the foliage layer. This study focuses on assessing the thermal resistance of the façade generated through the addition of vertical greenery systems in a steady state adopting a theoretical approach. A total of nine construction types are considered of varying insulation and vegetation strategies, and the influence of thermal insulation of the structure upon the resistive capacity of the façade improved by vertical greenery systems is evaluated. It is found that the effect of foliage in increasing the resistive capacity in cases with less insulated envelope is greater with a green façade showing 12.76% and living wall system showing 93.6%, and with the increase in the insulation of the construction type, the greening measures showed less impact in increasing the resistive capacity. The percentage increases system, respectively. The theoretical approach is adopted due to the complex metabolic processes in plants. This theoretical approach does not consider any other effect caused by the plant layer except the resistance generated by foliage when used in vertical greenery systems. Further, this study tries to explore conventional, vertical greenery system facades and their influence on material efficiency. The results will be useful to architects in designing energy-efficient and sustainable buildings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call