Abstract

Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h(-1) the metabolism was respiro-fermentative. The dilution rate at which the switch in metabolism occurred, i.e. the critical dilution rate, was 66% higher than the typical critical dilution rate of S. cerevisiae. The maximum specific oxygen consumption rate around the critical dilution rate was found to 13.6 mmol (g dry weight)(-1) h(-1) and the capacity of the pyruvate dehydrogenase-bypass pathway was estimated to be high from in vitro enzyme activities; especially the specific activity of acetyl-CoA synthetase was much higher than in S. cerevisiae at all tested conditions. Addition of glucose to respiring cells of S. kluyveri led to ethanol formation after a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.