Abstract

This paper describes the development of a comprehensive model for the continuous gas-phase synthesis of polypropylene using stirred-bed reactors. The model considers the important issues of physical property and thermodynamic model selections, polymer properties, catalyst characterization, and reactor residence time, in addition to the traditional Ziegler−Natta polymerization kinetics. Model development involves fundamental chemical engineering principles and advanced software tools, Polymers Plus and Aspen Dynamics. We characterize a Ziegler−Natta catalyst by assuming the existence of multiple catalyst site types. The model contains a single set of kinetic and thermodynamic parameters that accurately predicts the polymer production rate, molecular weight, polydispersity index, and composition for both homopolymer and impact copolymer product grades from a large-scale commercial process. We demonstrate the application of our dynamic model and process control by comparing grade-transition strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.