Abstract
AbstractTwo-dimensional steady gravity waves with vorticity are considered on water of finite depth. The dispersion equation is analysed for general vorticity distributions, but under assumptions valid only for unidirectional shear flows. It is shown that for these flows (i) the general dispersion equation is equivalent to the Sturm–Liouville problem considered by Constantin & Strauss (Commun. Pure Appl. Math., vol. 57, 2004, pp. 481–527; Arch. Rat. Mech. Anal., vol. 202, 2011, pp. 133–175), (ii) the condition guaranteeing bifurcation of Stokes waves with constant wavelength is fulfilled. Moreover, a necessary and sufficient condition that the Sturm–Liouville problem mentioned in (i) has an eigenvalue is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.