Abstract

AbstractThe dynamic behaviour of compressible fluids depends crucially on the curvature of isentropes in the pressure/specific volume diagram. Most conveniently this curvature is expressed in form of a non‐dimensional quantity Γ now commonly referred to as the fundamental derivative of gasdynamics, Thompson [5]. Bethe‐Zel'dovich‐Thompson (BZT) fluids have the distinguishing property that they exhibit embedded regions in the general neighbourhood of the thermodynamic critical point where Γ is negative in contrast to classical gases of low molecular complexity including perfect gases where Γ is strictly positive.The behaviour of steady transonic flows of such fluids is essentially governed by two non‐dimensional parameters: (Γ) and its derivative with respect to the density at constant entropy (Λ), Cramer and Fry [2], Kluwick [4]. The resulting response to external forcing is surprisingly rich in nonclassical phenomena such as rarefaction shocks, sonic shocks, split shocks, etc. and is studied in detail for the canonical problem of two‐dimensional flow past compression/expansion ramps. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.