Abstract

The Maryland Centrifugal Experiment MCX [R. F. Ellis, A. B. Hassam, and S. Messer, Phys. Plasmas 8, 2057 (2000)] studies supersonic rotation and enhanced confinement produced by the application of an electric field perpendicular to an axial confining mirror magnetic field; radial shear in the rotation is predicted to stabilize magnetohydrodynamic (MHD) interchange modes. The MCX mirror field is 2.6 m in length, maximum mirror field 1.9 T, maximum midplane field 0.33 T; an inner coaxial core is driven by a 10 KV capacitor bank, producing the radial electric field which drives azimuthal rotation. MCX produces high density (n>1020m−3) fully ionized plasmas and has two operating modes. In the O (ordinary) mode the plasma rotates supersonically with azimuthal velocities in the range of 100 km/s for discharge times exceeding 8 ms. Ion temperatures are ∼30eV and momentum confinement times 100–200 μs. Sonic Mach numbers (uφ∕vti) in the range 1–2 and Alfvén Mach numbers (uφ∕vA)∼0.3 have been achieved for O mode discharges which remain steady for many milliseconds, much longer than MHD instability time scales; plasma lifetime is limited by the capacitance of the capacitor bank. MCX also has an enhanced mode of operation [higher rotation (HR) mode] with higher rotation velocities (>200km∕s), sonic Mach numbers greater than 3, Alfvén Mach numbers >∼0.5, and momentum confinement times of several hundred microseconds. HR mode occurs at higher B fields and lower discharge currents but is transient, transitioning to O mode after a few milliseconds. Both O and HR mode show spectroscopic evidence of radial velocity shear sufficient to satisfy the simplest criterion for MHD stability, but both modes also show significant fluctuations on magnetic probes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call