Abstract
We discuss experimental investigations on steady streaming flows of dilute and semi-dilute polymer solutions in microfluidic devices. The effect of non-Newtonian behavior on steady streaming for different model fluids is determined by characterizing the evolution of the inner streaming layer as a function of oscillation frequency using particle tracking velocimetry. We find that steady streaming velocity profiles in constant-viscosity elastic liquids are qualitatively similar to those in Newtonian liquids. Steady streaming velocity profiles in elastic liquids with strong shear thinning, however, display two unique features: (i) a non-monotonic evolution of the inner streaming layer with increasing frequency, first growing then decreasing in width, and (ii) a clear asymmetry in the flow profile at high frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.