Abstract

We prove the existence, uniqueness and continuous dependence on the data of weak solutions to boundary-value problems that model steady flows of incompressible Newtonian fluids with wall slip in bounded domains. The flows satisfy the Stokes equations and a nonlinear slip boundary condition: for slip to occur, the magnitude of the tangential traction must exceed a prescribed threshold, which is independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. The method of proof is based on a variational inequality formulation of the problem and fixed point arguments which utilize wellposedness results for the Stokes problem with a slip condition of the "friction type".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call