Abstract

Velocity continuity and force balance are usually required at the interface of two fluid phases in conventional hydrodynamics, where the viscosity is assumed to be constant in a single fluid phase. These boundary conditions connect the pressure and velocity fields across the interface. An alternative way to achieve this connection, where the viscosity is assumed to smoothly change across a thin interfacial region, was proposed to facilitate the numerical study of colloidal dynamics. We study the steady Stokes flow in and around a single droplet by use of the smoothened viscosity, imposing a purely extensional flow far from the droplet. In the limit of the thin interfacial region, we analytically obtain a set of connection formulas, which yields the fields that are different from those obtained in conventional hydrodynamics unless the droplet is a rigid body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.