Abstract

We consider effects of a long-wavelength disorder potential on the zero conductance state (ZCS) of the microwave-irradiated 2D electron gas. Assuming a uniform Hall conductivity, we construct a Lyapunov functional and derive stability conditions on the domain structure of the photogenerated fields. We solve the resulting equations for a general one-dimensional and certain two-dimensional disorder potentials, and find nonzero conductances, photovoltages, and circulating dissipative currents. In contrast, weak white-noise disorder does not destroy the ZCS, but induces mesoscopic current fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.