Abstract
This paper is dedicated to studying the steady state problem of a population-toxicant model with negative toxicant-taxis, subject to homogeneous Neumann boundary conditions. The model captures the phenomenon in which the population migrates away from regions with high toxicant density towards areas with lower toxicant concentration. This paper establishes sufficient conditions for the non-existence and existence of non-constant positive steady state solutions. The results indicate that in the case of a small toxicant input rate, a strong toxicant-taxis mechanism promotes population persistence and engenders spatially heterogeneous coexistence (see, Theorem 2.3). Moreover, when the toxicant input rate is relatively high, the results unequivocally demonstrate that the combination of a strong toxicant-taxis mechanism and a high natural growth rate of the population fosters population persistence, which is also characterized by spatial heterogeneity (see, Theorem 2.4).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.