Abstract

We present a comprehensive study and full classification of the stationary solutions in Leith’s model of turbulence with a generalised viscosity. Three typical types of boundary value problems are considered: Problems 1 and 2 with a finite positive value of the spectrum at the left (right) and zero at the right (left) boundaries of a wave number range, and Problem 3 with finite positive values of the spectrum at both boundaries. Settings of these problems and analysis of existence of their solutions are based on a phase–space analysis of orbits of the underlying dynamical system. One of the two fixed points of the underlying dynamical system is found to correspond to a ‘sharp front’ where the energy flux and the spectrum vanish at the same wave number. The other fixed point corresponds to the only exact power-law solution—the so-called dissipative scaling solution. The roles of the Kolmogorov, dissipative and thermodynamic scaling, as well as of sharp front solutions, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call