Abstract
Erythrocytes of various mammalian species -- including human -- maintain osmotic balance with the blood plasma (osmotic activity 270-310 mosmol). However, their intracellular levels of osmotically active ions (potassium, sodium, chloride, and hydrogencarbonate), water content and osmotic resistance deviate significantly. In the present report we study the relationship among intracellular water, potassium and sodium levels of the erythrocytes of various mammalian species and in the developing calf. In addition, the osmotic resistance, K(+) (Rb(+)) uptake and the DPH fluorescence anisotropy of various erythrocytes and erythrocyte ghost membranes were correlated. The results show no statistically significant relationship between erythrocyte water content and [K(+)+Na(+)] levels or K(+)/Na(+) ratios. The reversal of erythrocyte K(+)/Na(+) ratios coincides with the decrease of steady-state ATP levels in the developing calf. The mobility of lipids within the hydrophobic inner layer of the plasma membrane relates closely to passive K(+) (Rb(+)) uptake, and plays a significant role in regulatory volume changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.