Abstract

We introduce the steady-state two-relaxation-time (TRT) Lattice Boltzmann method. Owing to the symmetry argument, the bulk system and the closure equations are all expressed in terms of the equilibrium and non-equilibrium unknowns with the half discrete velocity set. The local mass-conservation solvability condition is adjusted to match the stationary, but also the quasi-stationary, solutions of the standard TRT solver. Additionally, the developed compact, boundary and interface-conjugate, multi-reflection (MR) concept preserves the efficient directional bulk structure and shares its parametrization properties. The method is exemplified in grid-inclined stratified slabs for two-phase Stokes flow and the linear advection-diffusion equation featuring the discontinuous coefficients and sources. The piece-wise parabolic benchmark solutions are matched exactly with the novel Dirichlet, pressure-stress, Neumann flux and Robin MR schemes. The popular, anti-bounce-back and shape-fitted Dirichlet continuity schemes are improved in the presence of both interface-parallel and perpendicular advection velocity fields. The steady-state method brings numerous advantages: it skips transient numerical instability, overpasses severe von Neumann parameter range limitations, tolerates high physical contrasts and arbitrary MR coefficients. The method is promising for faster computation of Stokes/Brinkman/Darcy linear flows in heterogeneous soil, but also heat and mass transfer problems governed by an accurate boundary and interface treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call