Abstract

AbstractThe problem of ice flow over threedimensional basal irregularities is studied by considering the steady motion of a fluid with a linear constitutive equation over sine-shaped basal undulations. The undisturbed flow is simple shear flow with constant depth. Using the ratio of the amplitude of the basal undulations to the ice thickness as perturbation parameter, equations to the first order for the velocity and pressure perturbations are set up and solved.The study shows that when the widths of the basal undulations are larger than 2–3 times their lengths, the finite width of the undulations has only a minor influence on the flow, which to a good approximation may be considered two-dimensional. However, as the ratio between the longitudinal and the transverse wavelengthL/Wincreases, the three-dimensional flow effects becomes substantial. If, for example, the ratio ofLtoWexceeds 3, surface amplitudes are reduced by more than one order of magnitude as compared to the two-dimensional case. TheL/Wratio also influences the depth variation of the amplitudes of internal layers and the depth variation of perturbation velocities and strain-rates. With increasingL/Wratio, the changes of these quantities are concentrated in a near-bottom layer of decreasing thickness. Furthermore, it is shown, that the azimuth of the velocity vector may change by up to 10° between the surface and the base of the ice sheet, and that significant transverse flow may occur at depth without manifesting itself at the surface to any significant degree.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call