Abstract
This work reports on results from two phase heat transfer devices assembled with ceramic capillary structure. It is firstly presented the manufacturing of the ceramic wick structures and afterwards the characterization of the morphological-and fluid-dynamical properties of these ceramic wick structures. As closing results, it is presented the thermal behaviour of two different two phase heat transfer devices, i.e. a Capillary Pumped Loop and a Loop Heat Pipe. The properties of the ceramic wick structure are within the desirable range for a correct functioning of these devices, e.g. porosity, pore size and permeability constants ranging from 40 to 60%, from 5 to 30μm and from 10-10 to 10-13m2, respectively. The thermal behaviour tests of the heat transfer devices used power heat load input in range from 10 to 20W and for all devices the evaporator temperature reached steady state condition. Thus, as a result, it can be claimed these ceramic wick structures as successful alternative for assembling capillary evaporator of CPL and LHP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.