Abstract

Two methods are presented for finding steady-state solutions of differential equations of any order governing certain systems that are acted upon by a harmonic force and have one nonlinear element with hysteresis represented by piecewise linearization. Both methods need the solution of a set of linear algebraic equations. In the first method, the unknowns are the Fourier coefficients of the steady-state solution, while in the second method, the unknowns are the values of the derivatives of the steady-state solution at a break point of the piecewise linearized characteristic. In both methods, the unknowns have to be calculated for different values of the time angle at the break point, yielding different corresponding values of the amplitude of the forcing term. The required solution is that consistent with the given amplitude of this forcing term. In the first method, the parameters involved in the multiple-input describing functions of the nonlinear element are unified by normalization. Comparison of the two methods is given, and the advantages of the piecewise linearization of characteristics is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.