Abstract

We consider a relatively simple model for pool-boiling processes. This model involves only the temperature distribution within the heater and describes the heat exchange with the boiling medium via a nonlinear boundary condition imposed on the fluid-heater interface. This results in a standard heat-transfer problem with a nonlinear Neumann boundary condition on part of the boundary. In a recent paper [Speetjens M, Reusken A, Marquardt W. Steady-state solutions in a nonlinear pool-boiling model. IGPM report 256, RWTH Aachen. Commun Nonlinear Sci Numer Simul, in press, doi:10.1016/j.cnsns.2006.11.002] we analysed this nonlinear heat-transfer problem for the case of two space dimensions and in particular studied the qualitative structure of steady-state solutions. The study revealed that, depending on system parameters, the model allows both multiple homogeneous and multiple heterogeneous temperature distributions on the fluid-heater interface. In the present paper we show that the analysis from Speetjens et al. ( doi:10.1016/j.cnsns.2006.11.002) can be generalised to the physically more realistic case of three space dimensions. A fundamental shift-invariance property is derived that implies multiplicity of heterogeneous solutions. We present a numerical bifurcation analysis that demonstrates the multiple solution structure in this mathematical model by way of a representative case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.