Abstract

The paper examines the steady-state behaviour of the Safronov-Dubovski coagulation equation for the kernel Vi,j = CV (iβ jγ + iγ jβ ) when 0 ≤ β ≤ γ ≤ 1, ( β + γ ) ∈ [0, 2] ∀ i, j ∈ ℕ, CV ∈ ℝ⁺. By assuming the boundedness of the second moment, the existence of a unique steady-state solution is established. Since, the model is non-linear and analytical solutions are not available for such cases, numerical simulations are performed to justify the theoretical findings. Four different test cases are considered by taking physically relevant kernels such as Vi,j = 2, (i + j), 8i1/2j1/2 and 2ij along with various initial conditions. The obtained results are reported in the form of graphs and tables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.