Abstract

The steady-state population of bodies resulting from a collisional cascade depends on how material strength varies with size. We find a simple expression for the power-law index of the population, given a power law that describes how material strength varies with size. This result is extended to the case relevant for the asteroid belt and Kuiper belt, in which the material strength is described by 2 separate power laws—one for small bodies and one for larger bodies. We find that the power-law index of the small body population is unaffected by the strength law for the large bodies, and vice versa. Simple analytical expressions describe a wave that is superimposed on the large body population because of the transition between the two power laws describing the strength. These analytical results yield excellent agreement with a numerical simulation of collisional evolution. These results will help to interpret observations of the asteroids and KBOs, and constrain the strength properties of those objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.