Abstract

Pressure changes in the liquid-filled fluid circuit of a hydraulically interconnected suspension (HIS) system can induce vibrations of the whole pipeline and the associated structure, and hence become a source of structural noise which degrades ride comfort. This paper presents a numerical and experimental investigation into the vibration of the hydraulic piping system of a passive interconnected suspension. The transfer matrix method (TMM) is used to develop a mathematical model, which consists of various pipe sections, hose sections, concentrated masses, spring supports, elbows, damper valves, and accumulators. Laboratory experiments are performed on two liquid-filled piping systems. The measured steady-state responses of the hydraulic circuits are compared with those obtained from numerical simulations of the developed model. It is found that the developed model of the hydraulic system has a reasonable accuracy in the frequency range of interest, and thus can be employed to optimise the design of the hydraulic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.