Abstract
The nonlinear Narimanov-Moiseev multimodal equations are used to study the swirling-type resonant sloshing in a circular base container occurring due to an orbital (rotary) tank motion in the horizontal plane with the forcing frequency close to the lowest natural sloshing frequency. An asymptotic steady-state solution is constructed and the response amplitude curves are analyzed to prove their hard-spring type behavior for the finite liquid depth (the mean liquid depth-to-the-radius ratio h>1). This behavior type is supported by the existing experimental data. The wave elevations at the vertical wall are satisfactorily predicted except for a frequency range where the model test observations reported wave breaking and/or mean rotational flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.