Abstract

A mathematical model is developed for the emulsion copolymerization of styrene and butadiene carried out in a continuous train of stirred tank reactors. The model predicts copolymer composition, conversion, molecular weight averages, and long chain branching frequencies, as well as the latex particle size distribution for all reactors in the train. It is capable of simulating closely the behaviour of industrial SBR processes. Several simulation studies are performed. Topics investigated include: process operating modifications to improve productivity; the effect of chain transfer agent flow rate and number of reactors on the molecular weight development; the effect of process modifications on the development of the particle size distribution down the reactor train; and the effect of reactor design on particle generation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.