Abstract

Despite decades of efforts, reliable measurements of nonlinear flow behavior of well-entangled polymers in continuous shear have been challenging to obtain. The present work attempts to accomplish three important tasks: (A) overcome this challenge by adopting a strategy of decoupling rheological measurements from the outer meniscus region in a cone-partitioned plate (C/PP) setup; (B) determine whether well-entangled solutions indeed undergo a flow transformation under creep that can be taken to phenomenologically define an entanglement-disentanglement transition (EDT); (C) provide the velocity profiles of such solutions undergoing either controlled-stress or controlled-rate shear by carrying out in situ particle-tracking velocimetric (PTV) measurements. Upon removing any influence of edge fracture and sample loss, we are able to reach steady state during continual shear and elucidate more reliably the nonlinear flow behavior of well entangled polymer solutions with little ambiguity. Three well-entangled s...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.