Abstract
An entangled steady-state behavior between two quantum thermal refrigeration machines is evaluated. Each machine is made up of three qubits of two-level, where each qubit interacts with its proper reservoir. The coupling between the qubits and the reservoirs is investigated with weak interaction. In addition, thermodynamic quantities such as heat flux are examined as a function of entanglement. The effect of temperature on entanglement is also studied in the cases of resonance and non-resonance. The obtained results show that the steady-state entanglement is more robust in the case of resonance than in the case of non-resonance. However, the maintenance in this case corresponds to the higher cooling power of the machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.