Abstract

We search for steady states in a class of fluctuating and driven physical systems that exhibit sustained currents. We find that the physical concept of a steady state, well known for systems at equilibrium, must be generalized to describe such systems. In these, the generalization of a steady state is associated with a stationary probability density of microstates and a deterministic dynamical system whose trajectories the system follows on average. These trajectories are a manifestation of nonstationary macroscopic currents observed in these systems. We determine precise conditions for the steady state to exist as well as the requirements for it to be stable. We illustrate this with some examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.