Abstract

A substantial opportunity exists to reduce carbon dioxide (CO2) emissions, as well as dependence on foreign oil, by developing strategies to cleanly and efficiently use biodiesel, a renewable domestically available alternative diesel fuel. However, biodiesel utilization presents several challenges, including decreased fuel energy density and increased emissions of smog-generating nitrogen oxides (NOx). These negative aspects can likely be mitigated via closed-loop combustion control provided the properties of the fuel blend can be estimated accurately, on-vehicle, in real-time. To this end, this paper presents a method to practically estimate the biodiesel content of fuel being used in a diesel engine during steady-state operation. The simple generalizable physically motivated estimation strategy presented utilizes information from a wideband oxygen sensor in the engine’s exhaust stream, coupled with knowledge of the air-fuel ratio, to estimate the biodiesel content of the fuel. Experimental validation was performed on a 2007 Cummins 6.7 l ISB series engine. Four fuel blends (0%, 20%, 50%, and 100% biodiesel) were tested at a wide variety of torque-speed conditions. The estimation strategy correctly estimated the biodiesel content of the four fuel blends to within 4.2% of the true biodiesel content. Blends of 0%, 20%, 50%, and 100% were estimated to be 2.5%, 17.1%, 54.2%, and 96.8%, respectively. The results indicate that the estimation strategy presented is capable of accurately estimating the biodiesel content in a diesel engine during steady-state engine operation. This method offers a practical alternative to in-the-fuel type sensors because wideband oxygen sensors are already in widespread production and are in place on some modern diesel vehicles today.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.