Abstract
We investigate convexly constrained mixture methods to adaptively combine outputs of two adaptive filters running in parallel to model a desired unknown system. We compare several algorithms with respect to their mean-square error in the steady state, when the underlying unknown system is nonstationary with a random walk model. We demonstrate that these algorithms are universal such that they achieve the performance of the best constituent filter in the steady state if certain algorithmic parameters are chosen properly. We also demonstrate that certain mixtures converge to the optimal convex combination filter such that their steady-state performances can be better than the best constituent filter. We also perform the transient analysis of these updates in the mean and mean-square error sense. Furthermore, we show that the investigated convexly constrained algorithms update certain auxiliary variables through sigmoid nonlinearity, hence, in this sense, related.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.