Abstract

The electrodissolution of p-Ge in aqueous NaOH solutions (pH 12–13) has been investigated with steady-state and impedance techniques. In the potential region where the process is under kinetic control, the impedance patterns are characterised by a high frequency capacitive loop, associated with the space charge, largely merged with another due to charge transfer resistance and double layer capacitance, and two low frequency loops changing from inductive to capacitive upon increasing the potential. At larger potential, under mixed control, the same high frequency features are observed, while a convection diffusion impedance dominates the low frequency response. The data relevant to pure kinetic control are interpreted with a simplified kinetic model, based on the classical scheme of Beck and Gerischer [Z. Electrochem., Ber. Bunsenges. Physik. Chem. 63 (1959) 500], neglecting transport effects and assuming only three electrochemical steps: (i) oxidation, involving water molecules, of Ge(0) to dihydroxylated Ge(II) by two holes; (ii) oxidation by one hole of Ge(II)–Ge(III) in a step requiring OH −; (iii) oxidative dissolution of Ge(III) proceeding either by hole capture or electron injection, leaving behind a surface Ge(0) species. Diagrams calculated for the limiting cases of pure depletion layer control reproduce the essential features of the experimental ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.