Abstract

AbstractModelling and simulation of hybrid reactive separation system in steady state and in dynamic regime was carried out. The investigated hybrid process consisted of a reactive distillation column and a pervaporation membrane located in the distillate stream to remove water from the process. Heterogeneously catalysed esterification of propionic acid with propan-1-ol to propyl propionate and water was chosen as the model chemical reaction. Esterification reactions are a typical example of equilibrium-limited reactions producing water as a by-product. Using just a pervaporation membrane brings the biggest benefit in increasing the yield of one of the reactants due to the removal of water. To study reactive separation processes, a model of the hybrid system in steady state and in dynamic regime was developed. Steady state behaviour of the model was studied for different hybrid system configurations. The effect of catalyst amount doubling was also investigated. Dynamic behaviour of the system during the step changes of propionic acid feed flow rate and during the membrane module failure was investigated. For this reason, the conversion of propionic acid, purity of the product stream, mole fraction of water, and the temperature in three different parts of the reactive distillation column were monitored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.