Abstract

In this study, nanoparticles were suspended in L-AN32 total loss system oil. The thixotropic yield behavior and viscoelastic behavior of ferrofluid were analyzed by steady-state and dynamic methods and explained according to the microscopic mechanism of magneto-rheology. The Herschel–Bulkley (H–B) model was used to fit the ferrofluid flow curves, and the observed static yield stress was greater than the dynamic yield stress. Both the static and dynamic yield stress values increased as the magnetic field increased, and the corresponding shear thinning viscosity curve increased more significantly as the magnetic field strength increased. The amplitude scanning results show that the linear viscoelastic region (LVE) is reached when the shear stress is 10%. The frequency scanning results showed that the storage modulus increased with the increase of the frequency at first. The storage modulus increased steadily at a higher frequency range, while the loss modulus increased slowly at the initial stage and rapidly at the later stage. In the amplitude sweep and frequency sweep experiments, the energy storage modulus and loss modulus are enhanced with the decrease of temperature. These findings are helpful to better understand the microscopic mechanism of magneto-rheology of ferrofluids, and also provide guidance for many practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call