Abstract
The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows the inside of the reactor accompanying nuclear fission reaction. In the previous study, the authors had developed numerical model to simulate the effects of the fuel salt flow on the reactor characteristics. This paper applies the model to the steady state analysis of the small MSR system and estimates the effects of the fuel flow. The model consists of two group diffusion equations for fast and thermal neutron fluxes, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The following results are obtained: (1) the fuel salt flow affects the distributions of the delayed neutron precursors, especially long-lived one, and (2) the extension of residence time in the external loop system and the rise of fuel inflow temperature slightly show negative reactivity effects, decreasing neutron multiplication factor of the small MSR system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.