Abstract
We experimentally investigate the multitime scale diffusion and the spatiotemporal behaviors of the degrees of enhancement for the longitudinal and the transverse diffusions in a confined mesoscopic quasi-two-dimensional dusty-plasma liquid sheared by two parallel counterpropagating laser beams. The steady external drive directly enhances the longitudinal cooperative hopping, associated with the shear bands that have high shear rate near boundaries. It drastically excites the slow hopping modes to high fluctuation level in the outer band region, accompanied by the enhanced superdiffusion. Through cascaded many-body interaction, the excitation flows from the outer region toward the center region, from the longitudinal modes to the transverse mode, and from the slow hopping modes to the fast caging modes, which are in better contact with the thermal bath. It causes the weaker enhancement of fluctuation level, and diffusion for the center region and the fast modes. The boundary confinement further breaks the system symmetry and enhances anisotropy. It has much stronger effect on the suppression of the transverse hopping modes than the longitudinal hopping mode. The degrees of enhancement of the fluctuations by the shear stress are highly anisotropic for the large amplitude slow modes, especially in the outer region but are more isotropic in the inner band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.