Abstract

A pore-network model is developed to simulate liquid water transport in a hydrophobic gas-diffusion layer (GDL) during the operation of polymer electrolyte membrane fuel cells (PEMFCs). The steady saturation distribution in GDLs is determined through a numerical procedure using a pore-network model combined with invasion-percolation path-finding and subsequent viscous two-phase flow calculation. The simulation results indicate that liquid water transport in hydrophobic GDLs is a strongly capillary-driven process that almost reaches the pure invasion-percolation limit with zero capillary number. A uniform flux condition is found to better reflect the actual phenomenon occurring at the inlet boundary for liquid water entering a GDL than a uniform pressure condition. The simulation further clarifies the effect of the invaded pore fraction at a uniform-flux inlet boundary in modifying water transport in GDLs. Finally, the effect of the GDL thickness on the steady saturation distribution is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call