Abstract
A pore-network model is developed to simulate liquid water transport in a hydrophobic gas-diffusion layer (GDL) during the operation of polymer electrolyte membrane fuel cells (PEMFCs). The steady saturation distribution in GDLs is determined through a numerical procedure using a pore-network model combined with invasion-percolation path-finding and subsequent viscous two-phase flow calculation. The simulation results indicate that liquid water transport in hydrophobic GDLs is a strongly capillary-driven process that almost reaches the pure invasion-percolation limit with zero capillary number. A uniform flux condition is found to better reflect the actual phenomenon occurring at the inlet boundary for liquid water entering a GDL than a uniform pressure condition. The simulation further clarifies the effect of the invaded pore fraction at a uniform-flux inlet boundary in modifying water transport in GDLs. Finally, the effect of the GDL thickness on the steady saturation distribution is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.