Abstract

The evolutions of ratcheting strains of polymethyl methacrylate (PMMA) at different temperatures and stress levels were experimentally investigated. A steady ratcheting strain growth region with a constant rate was observed in all specimens, which occupied significant part of total fatigue failure life. Experimental results also showed that the steady ratcheting growth rate varied with applied temperatures and loading. In this paper, theory of thermally activated process for glassy polymers was used to describe the plastic deformations during the cycle. Based on the correlations between ratcheting strains per cycle and hysteresis loop energy, a new ratcheting strains accumulative model for polymer materials was developed, which quantificationally elucidated the effects of temperature, loading frequency, mean stress and stress amplitude on the accumulative rate of ratcheting strains. Comparing the predications from the proposed model with experimental ratcheting strain data of PMMA, it was found that the model could describe the steady ratcheting strain accumulative behaviors under arbitrary temperatures and loading conditions exactly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.