Abstract

Rapidly varied open channel flows are characterized by curvilinear streamlines, thereby resulting in a pressure field different from the hydrostatic approach proposed in the standard gradually varied flow theory. This problem is related to environmental hydraulic problems such as the undular hydraulic jump and flow over round-crested weirs, for which streamline curvature effects are significant. The inclusion of the curvilinear streamline effect in an extended energy equation was firstly by Fawer. Most of the extended energy equations currently employed are therefore modified forms of the original Fawer approach. The aim of the present study is to highlight and remind engineers of the outstanding theory presented by Fawer. Herein, his approach for steady open channel flow with curved streamlines is revised and compared with experimental observations. Computational methods are presented in detail and based on present results, it can be observed that more recent and complex models for these problems are similar to the original proposal of Fawer, and hardly more accurate in some instances. Based on the proposed study an useful framework for theoretical models for steady open channel flows with curved streamlines is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.