Abstract

The impact of heat transfer in micropolar fluid may be developed due to its various promising applications in engineering, bio-medical sciences, geo-thermal progression, spherical storage tanks, nuclear power plants, automobile sectors etc. Motivated by such significance, the current study is to expound the influences of micropolar Casson fluid flow over a solid sphere with Brownian motion, thermophoretic force and buoyancy force surrounded by porous medium. The adopted model having complex PDE’s are reduced to dimensionless ODE’s by utilizing proper similarity solutions. A numerical approach have been carried out for velocity, micro rotation, temperature and concentration, the solutions are procured by Matlab Bvp4c code and plotted graphs for diverse involved parameters. An adequate result is acquired by an assessment with earlier available work. The effects of key parameters on surface drag coefficient, surface thermal flux and particles concentration flux are examined and displayed in tabular form. Grash of number raises the profiles of thermal flux and concentration flux where the buoyancy force is more dominant. Further, the obtained results indicate that the angular velocity is elevated near the surface of the sphere, and they behaves asymptotically far away from the surface due to the effect of micropolar parameter. Moreover, temperature and molar species concentration are enriched with upper values of micropolar factor. It is perceived that, augmented values of Casson parameter amplifies the velocity outline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.