Abstract
In this paper, numerical results on steady laminar flow of blood through an artery having two successive identical axisymmetric restrictions are presented, at varying degrees of restrictions. Physically, such a flow has features in common with steady blood flow through an artery with multiple stenoses. Additionally, results are presented for the blood flow through an artery in the presence of a single restriction, for comparison. The artery has been modelled as a tube with a rigid wall. The rheological characteristics of blood have been assumed both as Newtonian and non-Newtonian. Three different non-Newtonian models of blood — power law, Quemada, and Carreau—Yasuda models — have been considered in the analysis. The haemodynamic effects of the restrictions on the axial velocity distribution, recirculation zones formed downstream to the restrictions, the wall shear stress, and the pressure drop in the artery have been analysed. The irreversible pressure loss coefficient is calculated from the pressure drop and its variation with the degree of stenosis is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.