Abstract

AbstractIn the low-Froude-number limit, free-surface gravity waves caused by flow past a submerged obstacle have amplitude that is exponentially small. Consequently, these cannot be represented using an asymptotic series expansion. Steady linearized flow past a submerged source is considered, and exponential asymptotic methods are applied to determine the behaviour of the free-surface gravity waves. The free surface is found to contain longitudinal and transverse waves that switch on rapidly across curves known as Stokes lines on the free surface. The longitudinal waves are present everywhere downstream of the singularity, while the transverse waves are restricted to two downstream wedges. As the depth of the source approaches the surface, the familiar Kelvin-wedge wave behaviour is recovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.