Abstract
This work aims at observing the effect of the mortar element method applied to a geometry requiring refinement in the vicinity of singularities induced by the presence of sharp corners. We solve the two-dimensional incompressible Navier–Stokes equations with a spectral element method. Mortar elements allow for local polynomial refinement, since they allow for functional nonconformity. The problem solved is the flow in a channel partially obstructed by an obstacle representing a rectangular blade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.