Abstract

Forced convection heat transfer to incompressible power-law fluids from a heated circular cylinder in the steady cross-flow regime has been investigated numerically by solving the momentum and thermal energy equations using a finite volume method and the QUICK scheme on a non-uniform Cartesian grid. The dependence of the average Nusselt number on the Reynolds number (5 ⩽ Re ⩽ 40), power-law index (0.6 ⩽ n ⩽ 2) and Prandtl number (1 ⩽ Pr ⩽ 1000) has been studied in detail. The numerical results are used to develop simple correlations as functions of the pertinent dimensionless variables. In addition to the average Nusselt number, the effects of Re, Pr and n on the local Nusselt number distribution have also been studied to provide further physical insights. The role of the two types of thermal boundary conditions, namely, constant temperature and uniform heat flux on the surface of the cylinder has also been presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.