Abstract

In this paper our objective is to provide physically reasonable solutions for the stationary Navier–Stokes equations in a two-dimensional domain with two outlets to infinity, a semi-strip Π− and a half-plane K. The same problem in an aperture domain, i.e. in a domain with two half-plane outlets to infinity, has been studied but only under symmetry restrictions on the data. Here, we assume that the main asymptotic term of the solution takes an antisymmetric form in K and apply the technique of weighted spaces with detached asymptotics, i.e. we use spaces where the functions have prescribed asymptotic forms in the outlets.After first showing that the corresponding Stokes problem admits a unique solution if and only if certain compatibility conditions are satisfied, we write the Navier–Stokes equations as a perturbation of the Stokes problem and the crucial compatibility condition as an algebraic equation by which the flux becomes determined. Assuming that the coefficient of the main (antisymmetric) asymptotic term of the solution in K does not vanish and that the data are sufficiently small, we use a contraction principle to solve the Navier–Stokes system coupled with the algebraic equation.Finally, we discuss the ill-posedness of the Navier–Stokes problem with prescribed flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.