Abstract

The steady flow arising in a spheroidal cavity with periodically-deformed elastic wall is studied experimentally. It is found that average flows whose intensities and structures depend on the wall oscillation frequency and amplitude can develop in the fluid. The average flow is generated in the Stokes boundary layer whose relative thickness is characterized by the dimensionless frequency of the vibrational action. Flow in the form of a pair of toroidal vortices which occupy the entire cavity volume can be observed over the range of low dimensionless frequencies when the boundary layer thickness is comparable with the characteristic cavity dimension. Increase in the dimensionless frequency (decrease in the relative thickness of the Stokes layers) leads to a displacement of the primary vortices towards the cavity boundary. In this case secondary vortices with opposite swirling are formed in the central part of the cavity above the primary vortices. The further increase in the dimensionless frequency leads to development of the secondary vortices and growth of the flow intensity. The large-scale secondary vortices occupy almost the entire cavity volume over the range of high dimensionless frequencies. The dependences of the regimes of average flows and their intensities on the control dimensionless parameters, the oscillation amplitude and frequency, are found on the basis of the results of the investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.