Abstract
A steady flow of liquid was observed above the surface of a quartz crystal microbalance under conditions where the oscillation amplitude exceeded 10 nm. The streaming flow occurs parallel to the displacement vector and is directed towards the center of the plate. It is expected to have applications in acoustic sensing, in microfluidics, and in micromechanics in a wider sense. The flow is caused by the nonlinear term in the Navier-Stokes equation, which can produce a nonzero time-averaged force from a periodic velocity field. Central to the explanation are the flexural admixtures to the resonator's mode of vibration. Unlike pressure-driven flows, the acoustically driven steady flow attains its maximum velocity at a distance of a few hundred nanometers from the surface. It is therefore efficient in breaking bonds between adsorbed particles and the resonator surface. As a side aspect, the flow pattern amounts to a diagnostic tool, which gives access to the pattern of vibration. In particular, it leads to an estimate of the magnitude of the flexural admixtures to the thickness-shear vibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.